31 research outputs found

    Incumbent user active area detection for Licensed Shared Access

    Full text link
    © 2015 IEEE. Licensed Shared Access is a European standardisation effort which promotes repository based quasi-static hierarchical spectrum sharing. In this scheme the sharing time base is in the order of months if not years. For widespread use of Licensed Shared Access, shrinking the sharing time base is crucial. In this paper we propose a scheme to reduce the sharing time base to seconds or minutes scale. We present a new technique named lightweight Radio Environment Map based on a Kalman Filter derived from geo-location aware spectrum measurements, which can be run at the shared access licensee end. Our objective is to determine the active area of a static or slowly moving incumbent. We consider a challenging scenario where a large fraction of measurements is missing and the available measurements are highly distorted. Performance of our incumbent active area detection approach is evaluated by simulating a low power incumbent in an urban cellular environment. Simulation results show a substantial improvement of missed detection area in comparison to the counterpart that does not use our lightweight Radio Environment Map

    Distributed Power Allocation Algorithm for General Authorised Access in Spectrum Access System

    Full text link
    © 2019 IEEE. To meet the capacity needs of the next generation wireless communications, U.S. Federal Communications Commission has recently introduced Spectrum Access System. Spectrum is shared between three tiers - Incumbents, Priority Access Licensees (PAL) and General Authorised Access (GAA) Licensees. When the incumbents are absent, PAL and GAA share the spectrum under the constraint that GAA ensure the aggregate interference to PAL is no more than -80 dBm within the PAL protection area. Currently GAA users are required to report their geolocations. However, geolocation is private information that GAA may not be willing to share. We propose a distributed GAA power allocation algorithm that does not require centralised coordination on sharing locations with other GAA users via SAS. We analytically proved the critical point of the interference along the PAL protection area to avoid calculating the interference on every points of the area. We proposed exclusion zone, transitional zone and open zone for GAA users to calculate the self-determined transmit power. Simulation results show that our method meets the interference requirement and achieve more than 90% of capacity approximation to the optimal centralised method, while completely masking the GAA locations

    Iteratively reweighted compressive sensing based algorithm for spectrum cartography in cognitive radio networks

    Full text link
    © 2014 IEEE. Spectrum cartography is the process of constructing a map showing Radio Frequency signal strength over a finite geographical area. In our previous work we formulated spectrum cartography as a compressive sensing problem and we illustrated how cartography can be used in the context of discovering spectrum holes in space that can be exploited locally in cognitive radio networks. This paper investigates the performance of compressive sensing based approach to cartography in a fading environment where realtime channel estimation is not feasible. To accommodate for lack of channel information we take an iterative approach. We extend the well-known iteratively reweighted ℓ1 minimisation approach by exploiting spatial correlation between two points in space. We evaluate the performance in an urban environment where Rayleigh fading is prominent. Our numerical results show a significant improvement in the probability of accurately making a spectrum sensing decision, in comparison to the well-known weighted approach and the traditional compressive sensing based method

    Design of Contour Based Protection Zones for Sublicensing in Spectrum Access Systems

    Full text link
    © 2017 IEEE. Spectrum Access System (SAS) allows incumbent military systems to share spectrum in a hierarchical manner with tier-2 Priority Access License (PAL) users and tier-3 General Authorized Access (GAA) users. FCC has recently allowed PAL owners to sublicense their channels. Therefore, when GAA channels are congested they can request a sublicense to access the PAL channel on a coordinated basis, which provides interference protection from other GAA users. In this paper, we propose a grid map to measure and monitor the secondary spectrum market for the purpose of spectrum trading with QoS guarantee. This work provides the subsequent spectrum trading models with a reasonable and dedicated interference graph for further optimization of spectrum allocation. Compared with traditional longterm spectrum licensing policy, short-term licensing makes the spectrum allocated effectively. We find the optimal resolution of the discrete grid map that maximizes the profit from sublicensing. Simulation results are provided to demonstrate how fine to grid the region and let the PAL owner achieve monetary benefit, in a given number of sensors

    On the Usage of Geolocation-Aware Spectrum Measurements for Incumbent Location and Transmit Power Detection

    Full text link
    © 2017 IEEE. Determining the geographical area that needs to be excluded due to incumbent activity is critical to realize high spectral utilization in spectrum sharing networks. This can be achieved by estimating the incumbent location and transmit power. However, keeping the hardware complexity of sensing nodes to a minimum and scalability are critical for spectrum sharing applications with commercial intent. We present a discrete-space l1-norm minimization solution based on geolocation-aware energy detection measurements. In practice, the accuracy of geolocation tagging is limited. We capture the impact as a basis mismatch and derive the necessary condition that needs to be satisfied for successful detection of multiple incumbents' location and transmit power. We find the upper bound for the probability of eliminating the impact of limited geolocation tagging accuracy in a lognormal shadow fading environment, which is applicable to all generic I1-norm minimization techniques. We propose an algorithm based on orthogonal matching pursuit that decreases the residual in each iteration by allowing a selected set of basis vectors to rotate in a controlled manner. Numerical evaluation of the proposed algorithm in a Licensed Shared Access (LSA) network shows a significant improvement in the probability of missed detection and false alarm

    An Adaptive UAV Network for Increased User Coverage and Spectral Efficiency

    Full text link
    © 2019 IEEE. Unmanned Aerial Vehicles (UAVs) are fast becoming a popular choice in a variety of applications in wireless communication systems. UAV-mounted base stations (UAV-BSs) are an effective and cost-efficient solution for providing wireless connectivity where fixed infrastructure is not available or destroyed. We present a method of using UAV-BSs to provide coverage to mobile users in a fixed area. We propose an algorithm for predicting the user locations based on their mobility data and clustering the predicted locations, so that one UAV-BS would provide coverage to one user cluster. The proposed method, hence is similar to the UAV-BSs following the users to keep them under the coverage region. Simulation results show that the proposed method increases the user coverage by 47%-72% and increases the spectral efficiency by 43%-55% depending on the scenario and in addition, reduces the number of UAV-BSs required to provide coverage

    Opportunistic Access to PAL Channel for Multi-RAT GAA Transmission in Spectrum Access System

    Full text link
    © 2017 IEEE. Spectrum Access System (SAS) is a three tier spectrum sharing framework proposed by the FCC. In this framework the aggregate interference of tier-3 General Authorised Access (GAA) users should be below a predetermined threshold anywhere within the tier-2 Priority Access Licensee (PAL) exclusion zone. GAA are expected to use a diverse range of Radio Access Technologies (RATs) with different levels of loading. We propose an optimal transmit power and probability of spectrum utilisation allocation scheme for GAA users that meets the average aggregate interference constraint within the GAA network. Most of the capacity maximisation studies consider the instantaneous aggregated interference from secondary users. In this paper we present an average aggregated interference method to optimise the capacity of GAA users in a single channel. Simulation results suggest that we can significantly increase the capacity of the channel by considering the probability spectrum utilisation of GAA users

    Enabling Ultra-Reliable and Low-Latency Communications through Unlicensed Spectrum

    Full text link
    © 2018 IEEE. In this article, we aim to address the question of how to exploit the unlicensed spectrum to achieve URLLC. Potential URLLC PHY mechanisms are reviewed and then compared via simulations to demonstrate their potential benefits to URLLC. Although a number of important PHY techniques help with URLLC, the PHY layer exhibits an intrinsic trade-off between latency and reliability, posed by limited and unstable wireless channels. We then explore MAC mechanisms and discuss multi-channel strategies for achieving low-latency LTE unlicensed band access. We demonstrate, via simulations, that the periods without access to the unlicensed band can be substantially reduced by maintaining channel access processes on multiple unlicensed channels, choosing the channels intelligently, and implementing RTS/CTS

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements
    corecore